Short-term changes in plant communities in arid Wyoming big sagebrush ecosystems from fuel treatments

David A. Pyke, Paul S. Doescher, Eugene W. Schupp, Michael D. Reisner, Scott Shaff, Jeff Burnham, and Andrew Lindgren
Thresholds of resilience
Fuel Reduction & Rangeland Practices

Untreated

Prescribed fire

Herbicide – tebuthiuron & imazapic

Mowing
Research Questions & Preliminary Results

- What plant community elements change with fuel treatments?

- Does *B. tectorum* dominance (foliar cover) relate to native plant distances or cover?
 - Easy tool to monitor resilience?

- Can distances among perennial plants predict thresholds of *B. tectorum* dominance?
Overview

- **7 sites**
 - 2 Washington
 - 2 Oregon
 - 1 Nevada
 - 1 Idaho
 - 1 Utah

- **A. tridentata ssp. wyomingensis communities**

- Loamy soils
Methods

- Four treatments/site (fire, mow, herbicide & control)
 - 18 pre/9 post-treatment subplots/trmt (30x30 m)
 - Plateau nested within each treatment

- Response variables
 - Foliar cover using line-point intercept
 - Basal gaps among perennial plants
Pre vs Post Total Per. Grass Cover

Year * Treatment

Year * Plateau

No Plateau
Plateau

Fire

Plateau
Fire

Sagebrush Steppe Treatment Evaluation Project
Wyoming big sagebrush cover

Year * Treatment

% ARTRW8 Cover

- 2 -1 0 1 2

Fire
Control
Teb
Mow

Fire & Mow
Basal Gaps by Treatment

Year * Treatment

- **Fire**
- **Fire + Plateau**
- **Fire vs. Control**

![Graph showing mean gap (cm) over years for different treatments.](image-url)
Pre vs Post Cheatgrass Cover

Mow vs. Control

Year * Plateau

Fire vs. Control

Mow + No Plateau

No Plateau

Fire + No Plateau
Total Annual Forbs

Year * Plateau

Year * Treatment

No Plateau

Mow & Fire
Basal Gap Size vs. Perennial Grass Cover

- Gap = 28 cm
- Gap > 500 cm

Correlation:

\[r^2 = 0.69 \]
Conceptual *a priori* model of ecosystem invasibility

From Reisner 2011
Study Design

- 75 sites; 3 grazing allotments; sampled over 2 years
- Stratified random sampling design to capture:
 - Herbivory Stress – Distance from water & cow pies
 - Water stress – driven differences soil texture
 - Five different Ecological Sites
 - Fine soil texture = low water stress
 - Coarse soil textured soil = high water stress
 - Quantified: soil texture and depth
 - Heat stress – driven by slope and aspect

![Loam](image1.jpg) ![Clay loam](image2.jpg) ![Sandy Loam](image3.jpg) ![North Slopes](image4.jpg) ![South Slopes](image5.jpg)
Catastrophic regime shift

Decreasing resilience to disturbance and stress and decreasing resistance to non-native invasions

Intact phase dominated by natives
At-risk Natives with cheatgrass

Cheatgrass and *Poa secunda*
Cheatgrass and *E. elymoides*

Patterns of Invasibility

Annual grassland

Catastrophic regime shift

31% of study sites (intact 1 & 2)
25% of study sites (Phase-at-risk)
23% of study sites (state 2)
21% of study sites (state 3)
Stress & Community Relationships

From Reisner 2011
Stress & Sage Facilitation

Low Stress Group

High Stress Group

Focal species

<table>
<thead>
<tr>
<th>Species</th>
<th>Low Stress</th>
<th>High Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. elymoides</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>P. secunda</td>
<td>(0)</td>
<td>(+ +)</td>
</tr>
<tr>
<td>A. thurberianum</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>P. spicata</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>H. comata</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>A. hymenoides</td>
<td>(-)</td>
<td>(0)</td>
</tr>
<tr>
<td>B. tectorum</td>
<td>(-)</td>
<td>(0)</td>
</tr>
<tr>
<td>L. perfoliatum</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

Focal Species Cover | Interspace | Under Shrub
Methods
Structural Equation Modeling

- Ecosystem invasibility = cheatgrass cover

- Bunchgrass community composition = bunchgrass cover NMS and used the axes as indices

- Community structure = % of transects covered by large basal gaps (>200cm)

- Safe sites = BSC cover and % bare soil cover
Cheatgrass cover

Community structure

% of large basal gaps between perennial vegetation

Native bunchgrass cover

Bunchgrass community composition

Axis 1
$R^2 = 0.37$

Axis 3
$R^2 = 0.05$

BSC cover

% bare soil

R2 = 0.50

Cheatgrass cover

% of large basal gaps between perennial vegetation

Community structure

Bunchgrass abundance

Chi-square = 11.73 (p = 0.59)

From Reisner 2011
Fuel Treatment Preliminary Conclusions

Decreases

- Fire
 - Shrubs
 - Perennial grasses
 - Mosses
- Mowing
 - Shrubs
- Plateau
 - Cheatgrass
 - Perennial grasses
 - Annual forbs

Increases

- Fire
 - Basal gap size
 - Bare ground
- Mowing
 - Cheatgrass
 - Perennial grasses
- Plateau & Fire
 - Bare ground
 - Basal gap size
Stress & Resilience
Preliminary Conclusions

- Spatial structure of perennial plants (gaps) is directly related to cheatgrass dominance.
 - High livestock grazing intensity plus heat and water stress indirectly create these gaps
 - Fire & Plateau also increases gaps

- Perennial grasses associate with shrubs with high stress

- Fire kills shrub and grasses and increases basal gaps

- Monitoring gaps between perennial plants may provide a fast early warning indicator of invasion potential.
Acknowledgments

◆ Funding:
 - USDA-USDI Joint Fire Sciences Program
 - US Geological Survey
 - Oregon State University & Utah State University

◆ Treatment Applications
 - BLM, USFWS, & USGS

◆ Site Selection
 - BLM, USFWS, BOR, TNC, & USFS

◆ Housing
 - USFWS, TNC, USDA ARS NGBER

◆ Field Assistants
 - Field crew members with USGS, OSU & USU